2m/MTH-150 Syllabus-2023

2025

(May-June)

FYUP: 2nd Semester Examination

MATHEMATICS

(Minor)

(Fundamental Mathematics—II)

(MTH-150)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer four questions, selecting one from each Unit

UNIT-I

1. (a) If by rotation of the rectangular axes the equation $17x^2 + 18xy - 7y^2 = 1$ reduces to the form $ax^2 + by^2 = 1$, then find the values of a and b. Also, find the angle through which the axes are rotated.

4+1=5

(b) Find the equation of the pair of straight lines through the point (2, -3) parallel to the straight lines

$$15x^2 + xy - 6y^2 + x + 7y - 2 = 0$$

- (c) Reduce the equation $9x^2 24xy + 16y^2 18x 101y + 19 = 0$ to standard form.
- (d) Show that the angle between one of the lines $ax^2 + 2hxy + by^2 = 0$ and one of the lines $(a \lambda)x^2 + 2hxy + (b \lambda)y^2 = 0$ is equal to the angle between the other two lines of the system.
- 2. (a) Find the angle through which a set of rectangular axes must be turned, without the change of origin, so that the expression $7x^2 + 4xy + 3y^2$ will be transformed into the form $a'x^2 + b'y^2$. 5
 - (b) Find the value of k so that the equation $kx^2 + 3xy 5y^2 + 7x + 14y + 3 = 0$ may represent a pair of straight lines.

(c) Find the condition that the pair of lines $Ax^{2} + 2Hxu + Bu^{2} = 0$

may be conjugate diameters of the conic

$$ax^2 + 2hxy + by^2 = 1$$

(d) Show that the equation

$$14x^2 - 4xy + 11y^2 - 44x - 58y + 71 = 0$$

represents an ellipse and find its centre.

1+3=4

5

5

UNIT-II

3. (a) Find the equation of the plane passing through the point (1, -2, 3) and perpendicular to the lines

$$\frac{x-1}{4} = \frac{y+2}{5} = \frac{z}{2}$$
 and $\frac{x+4}{3} = \frac{y}{-2} = \frac{z-7}{1}$

(b) Find the equation of the sphere passing through the origin and the circle

$$x^{2} + y^{2} + z^{2} - 4x + 3 = 0 = x^{2} + y^{2} + z^{2} + 2y + 4$$
 5

- (c) Show that the cones $ax^2 + by^2 + cz^2 = 0$ and $bcx^2 + cay^2 + abz^2 = 0$ are reciprocal to each other.
- (d) Find the equation of the cone whose vertex is the point (1, 1, 1) and whose guiding curve is z = 0, $x^2 + y^2 = 4$.

5

5

- (a) Find the normal form of the plane which passes through the point (-1, 5, 2) and whose normal has direction ratios 3, 0, 4.
 - Find the enveloping cone of the sphere

$$x^2 + y^2 + z^2 + 2x - 4y + 2z + 1 = 0$$

with vertex at (2, 1, 3).

Prove that the plane 2x-2y+z+12=0touches the sphere

$$x^2 + y^2 + z^2 - 2x - 4y + 2z = 3$$

(d) Find the equation of a right circular cone whose vertex is (1, -2, -1), semivertical angle is $\frac{\pi}{3}$ and axis is

$$\frac{x-1}{3} = \frac{y+2}{-4} = \frac{z+1}{5}$$

UNIT-III

Show that (a)

D25/1237

$$\lim_{(x, y)\to(0, 0)} \frac{xy}{\sqrt{x^2 + y^2}} = 0$$

(b) Determine whether the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x, y) = xy\ln(x^2 + y^2)$$

has a removable discontinuity at (0, 0). 5

(Continued)

Determine whether

$$\lim_{(x, y)\to(0, 0)} \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$

exists or not.

(d) Show that

D25/1237

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$$

when $u = x^y$.

6. (a) (i) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x, y) = \frac{xy}{x^2 + y^2}$$

when $(x, y) \neq (0, 0)$ and f(0, 0) = 0. Find the partial derivatives $f_r(0, 0)$ and $f_{u}(0, 0)$.

(ii) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = x^2 + y^2 + xy$. Show that

$$f_{xy} = f_{yx}$$
 5+4=9

Determine the second-order partial derivatives $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial u^2}$ and $\frac{\partial^2 f}{\partial x \partial y}$ for

$$f(x, y) = x^2 e^y.$$

(Turn Over)

5

5

5

5

5

(c) If $z = \frac{y}{x+y}$, then find the value of

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}.$$
 5

UNIT-IV

- 7. (a) Prove that $\overline{a} \times \{\overline{b} \times (\overline{c} \times \overline{d})\} = (\overline{b} \cdot \overline{d})\overline{a} \times \overline{c} (\overline{b} \cdot \overline{c})\overline{a} \times \overline{d}$
 - (b) Prove that any vector \bar{r} can be expressed as $\bar{r} = \frac{[\bar{r}\ \bar{b}\ \bar{c}]}{[\bar{a}\ \bar{b}\ \bar{c}]} \bar{a} + \frac{[\bar{r}\ \bar{c}\ \bar{a}]}{[\bar{a}\ \bar{b}\ \bar{c}]} \bar{b} + \frac{[\bar{r}\ \bar{a}\ \bar{b}]}{[\bar{a}\ \bar{b}\ \bar{c}]} \bar{c}$, where \bar{a} , \bar{b} , \bar{c} are non-coplanar vectors.
 - (c) Prove that

$$\frac{d}{dt}\left(\bar{r}\times\frac{d\bar{r}}{dt}\right) = \bar{r}\times\frac{d^2\bar{r}}{dt^2}$$

(d) If $\bar{r} = \bar{a}e^{nt} + \bar{b}e^{-nt}$, where \bar{a} , \bar{b} are constant vectors, then show that

$$\frac{d^2\bar{r}}{dt^2} - n^2\bar{r} = 0$$

(e) Find the unit tangent vector $\overline{T}(t)$ and unit normal vector $\overline{N}(t)$ for the circular helix $x = a\cos t$, $y = a\sin t$, z = ct. 2+3=5

- **8.** (a) Find the unit vector normal to the surface $x^2 + y^2 z = 0$ at the point (-2, 1, 0).
 - (b) What is the greatest rate of increase of $u = xyz^2$ at the point (1, 0, 3)?
 - (c) Prove that

$$\nabla^2 \left(\frac{1}{r}\right) = 0$$

3

- (d) If $\overline{F} = (x+y+1)\hat{i} + \hat{j} + (-x-y)\hat{k}$, then prove that $\overline{F} \cdot \text{curl } \overline{F} = 0$.
- (e) If A and B are irrotational, then prove that $\overline{A} \times \overline{B}$ is solenoidal.

* * *

3